3.2.63 \(\int \csc ^6(e+f x) (a+b \tan ^2(e+f x))^p \, dx\) [163]

3.2.63.1 Optimal result
3.2.63.2 Mathematica [A] (verified)
3.2.63.3 Rubi [A] (verified)
3.2.63.4 Maple [F]
3.2.63.5 Fricas [F]
3.2.63.6 Sympy [F(-1)]
3.2.63.7 Maxima [F]
3.2.63.8 Giac [F]
3.2.63.9 Mupad [F(-1)]

3.2.63.1 Optimal result

Integrand size = 23, antiderivative size = 180 \[ \int \csc ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx=-\frac {(10 a-b (3-2 p)) \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{1+p}}{15 a^2 f}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{1+p}}{5 a f}-\frac {\left (15 a^2-b (10 a-b (3-2 p)) (1-2 p)\right ) \cot (e+f x) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},-p,\frac {1}{2},-\frac {b \tan ^2(e+f x)}{a}\right ) \left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a}\right )^{-p}}{15 a^2 f} \]

output
-1/15*(10*a-b*(3-2*p))*cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(p+1)/a^2/f-1/5*cot 
(f*x+e)^5*(a+b*tan(f*x+e)^2)^(p+1)/a/f-1/15*(15*a^2-b*(10*a-b*(3-2*p))*(1- 
2*p))*cot(f*x+e)*hypergeom([-1/2, -p],[1/2],-b*tan(f*x+e)^2/a)*(a+b*tan(f* 
x+e)^2)^p/a^2/f/((1+b*tan(f*x+e)^2/a)^p)
 
3.2.63.2 Mathematica [A] (verified)

Time = 0.99 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.78 \[ \int \csc ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx=-\frac {\cot (e+f x) \left (3 \cot ^4(e+f x) \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},-p,-\frac {3}{2},-\frac {b \tan ^2(e+f x)}{a}\right )+10 \cot ^2(e+f x) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-p,-\frac {1}{2},-\frac {b \tan ^2(e+f x)}{a}\right )+15 \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},-p,\frac {1}{2},-\frac {b \tan ^2(e+f x)}{a}\right )\right ) \left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a}\right )^{-p}}{15 f} \]

input
Integrate[Csc[e + f*x]^6*(a + b*Tan[e + f*x]^2)^p,x]
 
output
-1/15*(Cot[e + f*x]*(3*Cot[e + f*x]^4*Hypergeometric2F1[-5/2, -p, -3/2, -( 
(b*Tan[e + f*x]^2)/a)] + 10*Cot[e + f*x]^2*Hypergeometric2F1[-3/2, -p, -1/ 
2, -((b*Tan[e + f*x]^2)/a)] + 15*Hypergeometric2F1[-1/2, -p, 1/2, -((b*Tan 
[e + f*x]^2)/a)])*(a + b*Tan[e + f*x]^2)^p)/(f*(1 + (b*Tan[e + f*x]^2)/a)^ 
p)
 
3.2.63.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.02, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3042, 4146, 365, 359, 279, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \tan (e+f x)^2\right )^p}{\sin (e+f x)^6}dx\)

\(\Big \downarrow \) 4146

\(\displaystyle \frac {\int \cot ^6(e+f x) \left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a\right )^pd\tan (e+f x)}{f}\)

\(\Big \downarrow \) 365

\(\displaystyle \frac {\frac {\int \cot ^4(e+f x) \left (5 a \tan ^2(e+f x)+10 a-b (3-2 p)\right ) \left (b \tan ^2(e+f x)+a\right )^pd\tan (e+f x)}{5 a}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{p+1}}{5 a}}{f}\)

\(\Big \downarrow \) 359

\(\displaystyle \frac {\frac {\frac {\left (15 a^2-b (1-2 p) (10 a-b (3-2 p))\right ) \int \cot ^2(e+f x) \left (b \tan ^2(e+f x)+a\right )^pd\tan (e+f x)}{3 a}-\frac {(10 a-b (3-2 p)) \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{p+1}}{3 a}}{5 a}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{p+1}}{5 a}}{f}\)

\(\Big \downarrow \) 279

\(\displaystyle \frac {\frac {\frac {\left (15 a^2-b (1-2 p) (10 a-b (3-2 p))\right ) \left (a+b \tan ^2(e+f x)\right )^p \left (\frac {b \tan ^2(e+f x)}{a}+1\right )^{-p} \int \cot ^2(e+f x) \left (\frac {b \tan ^2(e+f x)}{a}+1\right )^pd\tan (e+f x)}{3 a}-\frac {(10 a-b (3-2 p)) \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{p+1}}{3 a}}{5 a}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{p+1}}{5 a}}{f}\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {\frac {-\frac {\left (15 a^2-b (1-2 p) (10 a-b (3-2 p))\right ) \cot (e+f x) \left (a+b \tan ^2(e+f x)\right )^p \left (\frac {b \tan ^2(e+f x)}{a}+1\right )^{-p} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},-p,\frac {1}{2},-\frac {b \tan ^2(e+f x)}{a}\right )}{3 a}-\frac {(10 a-b (3-2 p)) \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{p+1}}{3 a}}{5 a}-\frac {\cot ^5(e+f x) \left (a+b \tan ^2(e+f x)\right )^{p+1}}{5 a}}{f}\)

input
Int[Csc[e + f*x]^6*(a + b*Tan[e + f*x]^2)^p,x]
 
output
(-1/5*(Cot[e + f*x]^5*(a + b*Tan[e + f*x]^2)^(1 + p))/a + (-1/3*((10*a - b 
*(3 - 2*p))*Cot[e + f*x]^3*(a + b*Tan[e + f*x]^2)^(1 + p))/a - ((15*a^2 - 
b*(10*a - b*(3 - 2*p))*(1 - 2*p))*Cot[e + f*x]*Hypergeometric2F1[-1/2, -p, 
 1/2, -((b*Tan[e + f*x]^2)/a)]*(a + b*Tan[e + f*x]^2)^p)/(3*a*(1 + (b*Tan[ 
e + f*x]^2)/a)^p))/(5*a))/f
 

3.2.63.3.1 Defintions of rubi rules used

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 

rule 279
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntP 
art[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[(c*x)^m* 
(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && 
!(ILtQ[p, 0] || GtQ[a, 0])
 

rule 359
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[c*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] + 
Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)* 
(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] 
&& LtQ[m, -1] &&  !ILtQ[p, -1]
 

rule 365
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^2, x 
_Symbol] :> Simp[c^2*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] 
- Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^2)^p*Simp[2*b*c^2*(p 
+ 1) + c*(b*c - 2*a*d)*(m + 1) - a*d^2*(m + 1)*x^2, x], x], x] /; FreeQ[{a, 
 b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4146
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[c*(ff^(m + 1)/f)   Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)^(m/ 
2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x 
] && IntegerQ[m/2]
 
3.2.63.4 Maple [F]

\[\int \csc \left (f x +e \right )^{6} \left (a +b \tan \left (f x +e \right )^{2}\right )^{p}d x\]

input
int(csc(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x)
 
output
int(csc(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x)
 
3.2.63.5 Fricas [F]

\[ \int \csc ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \csc \left (f x + e\right )^{6} \,d x } \]

input
integrate(csc(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x, algorithm="fricas")
 
output
integral((b*tan(f*x + e)^2 + a)^p*csc(f*x + e)^6, x)
 
3.2.63.6 Sympy [F(-1)]

Timed out. \[ \int \csc ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx=\text {Timed out} \]

input
integrate(csc(f*x+e)**6*(a+b*tan(f*x+e)**2)**p,x)
 
output
Timed out
 
3.2.63.7 Maxima [F]

\[ \int \csc ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \csc \left (f x + e\right )^{6} \,d x } \]

input
integrate(csc(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x, algorithm="maxima")
 
output
integrate((b*tan(f*x + e)^2 + a)^p*csc(f*x + e)^6, x)
 
3.2.63.8 Giac [F]

\[ \int \csc ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{p} \csc \left (f x + e\right )^{6} \,d x } \]

input
integrate(csc(f*x+e)^6*(a+b*tan(f*x+e)^2)^p,x, algorithm="giac")
 
output
integrate((b*tan(f*x + e)^2 + a)^p*csc(f*x + e)^6, x)
 
3.2.63.9 Mupad [F(-1)]

Timed out. \[ \int \csc ^6(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx=\int \frac {{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^p}{{\sin \left (e+f\,x\right )}^6} \,d x \]

input
int((a + b*tan(e + f*x)^2)^p/sin(e + f*x)^6,x)
 
output
int((a + b*tan(e + f*x)^2)^p/sin(e + f*x)^6, x)